Insulin and Sarcopenia in the Elderly
Funded Grant
Overview
Affiliation
View All
Overview
description
DESCRIPTION (provided by applicant): Our general hypothesis is that a reduced response of muscle protein anabolism to insulin plays an important role in the loss of muscle mass with aging. Our goal is to determine the mechanisms underlying the age-related insulin resistance of muscle proteins, which will allow us to define specific interventions to target this defect and provide the scientific basis for the prevention and treatment of sarcopenia. Our previous studies indicate that the response of muscle proteins to the anabolic action of insulin is impaired in healthy older adults as compared to younger controls, which hampers the anabolic effect of mixed feeding on muscle proteins. These changes are associated with an age-related reduction in the vasodilatory response to insulin, which, from our data, appears to be a potentially important mediator of the physiological anabolic effect of insulin on muscle proteins. Preliminary data from our laboratory also suggest that in older subjects a single bout of aerobic exercise may restore the normal response of blood flow, muscle protein synthesis and anabolism to insulin. Therefore, we will test in healthy subjects the following specific hypotheses: 1) Insulin-induced increases in blood flow and muscle perfusion are necessary for the physiological stimulation of muscle protein synthesis and anabolism by insulin. 2) Aging reduces the vascular sensitivity to insulin, which prevents the physiological increase in blood flow and muscle perfusion in response to insulin, thereby decreasing the response of muscle protein synthesis and net balance to the anabolic action of insulin and mixed feeding. 3) Aerobic exercise can restore, in older subjects, the insulin-induced increase in blood flow and muscle perfusion to youthful levels, thus normalizing the anabolic effect of insulin and mixed feeding on muscle protein synthesis and net muscle protein balance. We will use state-of the art stable isotope tracer techniques to measure muscle protein turnover, and a newly developed method to measure muscle perfusion in young and older subjects. The results of these studies will allow us to better define the physiological mechanisms of action of insulin on muscle protein anabolism, advance our knowledge on the pathophysiology of sarcopenia, and provide the scientific basis for the behavioral and/or pharmacological treatment of muscle loss with aging.